Proposal:
Interdisciplinary Graduate Certificate in Nanotechnology

John A. Jaszczak
Department of Physics
Associate Director for Education and Outreach, Multi-Scale Technologies Institute

Craig Friedrich
Department of Mechanical Engineering-Engineering Mechanics
Director, Multi-Scale Technologies Institute

Bruce E. Seely
Chair, Department of Social Sciences

1. General Description

This proposal recommends the establishment of a Graduate Certificate in Nanotechnology. This interdisciplinary certificate would be available to all degree-seeking as well as non-degree-seeking students enrolled in the Graduate School at Michigan Technological University.

Title of Certificate: Graduate Certificate in Nanotechnology

Catalog Description

The Graduate Certificate in Nanotechnology recognizes advanced study of scientific, technological, and engineering topics in nanotechnology, including aspects of (i) characterization, (ii) micro- to nano-scale fabrication and control, and (iii) devices, systems and integration. The certificate also requires study of the societal and ethical implications of emerging technologies.

2. Rationale

Nanotechnology is a rapidly developing field that seeks to understand, control, and exploit new physical properties that arise in systems at length scales between atoms and bulk materials. Applications of nanotechnology, which already are emerging, are highly interdisciplinary and include virtually all fields and disciplines in engineering and the natural sciences. Some enthusiasts are calling nanotechnology the next "industrial revolution."

Michigan Tech has strong and growing research thrusts that deal with a broad range nanoscale science and engineering. Likewise, MTU has been moving to develop appropriate educational program in nanotechnology. While the National Academy of Sciences has advised against rushing to start new engineering and science undergraduate degree programs in nanotechnology [1], Michigan Tech has successfully developed and started an interdisciplinary minor in Nanoscale Science and Technology in fall 2005, and is planning to start a new Nanotechnology Enterprise in January 2008 with NSF funding. The new Multi-Scale Technologies Institute (MuSTI), under the direction of Craig Friedrich, serves as an umbrella organization to assist in
the coordination and development of these and related research and educational efforts (http://www.me.mtu.edu/Institutes/MuSTI/). In this context, we believe that the Graduate Certificate in Nanotechnology is a necessary and appropriate educational opportunity for postgraduate students that will offer them an attractive supplement to their graduate degrees in this era of rapid paced technological change. In addition to a required course on nanotechnology's societal implications, students will choose elective courses to broaden their exposure to the science and applications of nanotechnology in other disciplines, as well as to deepen their understanding in their primary areas of interest.

The Graduate Certificate in Nanotechnology is designed to:

(1) deepen students’ understanding of technical aspects of nanoscale science, technology, and engineering;
(2) encourage students to pursue related interdisciplinary coursework outside their major;
(3) be flexible to allow for participation by students in diverse majors;
(4) familiarize students with the real and perceived societal implications of nanotechnology and other emerging technologies, which span from economics to ethics to politics.

3. Related Programs

Graduate certificates in nanotechnology or closely related fields exist at a few other institutions, including Lehigh University, Drexel University, the University of Pennsylvania, University of Massachusetts Lowell, Stanford University, and George Mason University. A small number of universities offer M.S. and Ph.D. degrees in nanotechnology [2]. This proposal is modeled in part on the graduate certificate program at University of Pennsylvania [3]. Two primary differences between this proposal and the U. Penn program are (i) U. Penn requires attendance at 6 seminars related to Nanoscale Science and Technology which this proposal does not, however (ii) this proposal requires all certificate seekers to take SS 5820 Societal Implications of Nanotechnology.

4. Projected Enrollment

Based on likely faculty participants and current graduate enrollments, we estimate that approximately 20 students may be enrolled at any time. In time we anticipate that this program would become available to students via Distance Learning.

5. Scheduling Plans

This graduate certificate program is primarily a regular (daytime) program.
6. Curriculum Design

A total of 15 credits are required for this certificate. Students must earn a grade of B or higher in each of the courses counting toward the certificate. As an interdisciplinary certificate, a maximum of 6 credits is allowed in courses at the 3000- and 4000- levels.

Required Courses:

(A) SS5820 Graduate Seminar in Societal Implications of Nanotechnology (2 credits)
This would be a new graduate-level version of SS 3820 Societal Implications of Nanotechnology, and has been proposed in the 2007 curriculum binder-process. (See the new course description below.)

(B) At least one course must be selected from the following list:
- BE/MY 5750 Bioapplications of Nanotechnologies†
- BL 5040/BK 5050 Electron Optical Methods of Analysis I and II: Principles and Techniques for Biologists (must be selected as a pair to count toward the requirement)
- MEEM 5640 - Micromanufacturing Processes
- EE/MY 5430 - Electronic Materials
- EE/MY 5460 - Solid State Devices
- MY 4710 - Photonic Materials and Devices
- MY 5550 - Solid Surfaces
- PH 5530 - Selected Topics in Nanoscale Science and Technology

For convenience, relevant course descriptions are given below:

BE/MY 5750 - Bioapplications of Nanotechnologies†
The prospect of bioapplications of nanotechnologies, selected topics including nanodevices for biosensor and drug delivery, biocompatibility and toxicity of nanomaterials, nanostructured polymers for tissue engineering, design and operation of medical nanorobots, ethics and societal impacts of nanobiotechnology, etc.
Credits: 2.0 Lec-Rec-Lab: (2-0-0)
Semesters Offered: Fall - Offered alternate years beginning with the 2005-2006 academic year
Restrictions: Must be enrolled in one of the following Level(s): Graduate

BL 5040 - Electron Optical Methods of Analysis I: Principles and Techniques for Biologists
Hands-on course focusing on use of transmission electron microscopes. Topics include sample preparation for biology, transmission electron optics, specimen-beam interactions, operating parameter choices, image formation and processing. Successful completion of course is the prerequisite to

† Next offering of this course is uncertain.
becoming a certified operator, MTU Electron Optics Facility. (This is a half semester course.)
Credits: 2.0 Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2002-2003 academic year
Restrictions: Must be enrolled in one of the following Level(s): Graduate

BL 5050 - Electron Optical Methods of Analysis II: Principles and Techniques for Biologists
Hands-on focusing on the use of transmission electron microscopes. Topics: sample preparation for biology, transmission electron optics, specimen-beam interactions, operating parameter choices, image formation and processing. Successful completion of course is the prerequisite to becoming a certified operator in the MTU Electron Optics Facility. (This is a half semester course)
Credits: 2.0 Lec-Rec-Lab: (0-3-3)
Semesters Offered: Fall - Offered alternate years beginning with the 2002-2003 academic year
Restrictions: Must be enrolled in one of the following Level(s): Graduate

MEEM 5640 - Micromanufacturing Processes
Introduces the processes and equipment for fabricating microsystems and the methods for measuring component size and system performance. Fabrication processes include microscale milling, drilling, diamond machining, and lithography. Measurement methods include interferometry and scanning electron microscopy. No credit for both MEEM4640 MEEM5640.
Credits: 3.0 Lec-Rec-Lab: (0-2-2) Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Level(s): Graduate
Pre-Requisite(s): MEEM 3502(C)

EE/MY 5430 - Electronic Materials
A study of the physical principles, operational characteristics, models, and basic applications of selected solid-state devices.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Level(s): Graduate

EE/MY 5460 - Solid State Devices
A study of the physical principles, operational characteristics and models and basic applications of solid state devices such as p-n junctions, metalsemiconductor junctions and transistors.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Fall

MY 4710 - Photonic Materials and Devices
The use of materials science and engineering principles in the design and processing of electronic materials and devices. Topics include operating principles of solid-state
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

MY 5550 - Solid Surfaces
The performance, durability, and stability of composites, coatings, films, advanced ceramics, implants, and nano-technological products rely on the understanding, control and manipulation of surfaces and interfaces. This course provides both a fundamental and practical introduction to the concepts and theories of solid surfaces and solid-liquid interfaces. The capillary effects, electrical aspects of interfaces, and adsorption at materials surfaces, with their practical applications and consequences, are emphasized.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
Restrictions: Must be enrolled in one of the following Level(s): Graduate

PH 5530 - Selected Topics in Nanoscale Science and Technology
Presentation and discussion of selected topics in nanoscale science and engineering. Topics include growth, properties, applications, and societal implication of nanoscale materials. Evaluation: attendance and assignment.
Credits: 2.0 Lec-Rec-Lab: (2-0-0)
Semesters Offered: On Demand

Elective Courses:
Students must take from the following list of approved courses at least one course from each of the three topical groups: Characterization; Fabrication and Control; and Devices, Systems, and Integration [3]. Remaining credits may be taken from any of the topical groups or the "Other Electives" group. At least 6 credits in this graduate certificate program, not counting SS 5820, must be from outside of the student's home department. Students in interdisciplinary graduate degree programs and students not seeking a graduate degree must have their selection of elective courses approved by the MuSTI Associate Director for Education and Outreach, or in the absence of such an office, by a faculty member appointed by the Dean of the Graduate School. Underlined courses listed below satisfy part (B) of the "Required Courses" stipulation outlined above.

1. Characterization
 BL 5040 - Electron Optical Methods of Analysis I: Principles and Techniques for Biologists (2)
 BL 5050 - Electron Optical Methods of Analysis II: Principles and Techniques for Biologists (2)
 BL 5060 - Biological Ultrastructure (4)
 FW 5080 - Gene Profiling Analysis (2)
 MY 4200 - Introduction to Scanning Electron Microscopy (2)
 MY 5200 - Advanced Scanning Electron Microscopy (3)
 MY 5250 - Transmission Electron Microscopy (3)
2. Fabrication and Control
 BE 4700 - Biosensors: Fabrication and Applications (3)
 EE 5470 - Semiconductor Fabrication (3) [co-listed with MY 5470]
 EE 6480 - Thin Films (3) [co-listed with MY 6480]
 MEEM 5640 - Micromanufacturing Processes (3)
 MY 5470 - Semiconductor Fabrication (3) [co-listed with EE 5470]
 MY 6480 - Thin Films (3) [co-listed with EE 6480]

3. Devices, Systems, and Integration
 BE 5300 - Advanced Polymeric Biomaterials (3)
 BE 5660 - Active Implantable Devices (3)
 BE 5700 - Biosensors (3)
 BE 5800 - Advanced Biomaterials Interfaces (3)
 BE 5750 - Bioapplications of Nanotechnologies (2) [co-listed with MY 5750]
 BL 5020 - Enzymology (3)
 EE 5460 - Solid State Devices (3) [co-listed with MY 5460]
 EE 5480 - Advanced MEMS (4) [co-listed with MY 5480]
 MY 4240 - Introduction to MEMS (4)
 MY 4240D - Introduction to MEMS (4)
 MY 5480 - Advanced MEMS (4) [co-listed with EE 5480]
 MY 4710 - Photonic Materials and Devices (3)
 MY 5460 - Solid State Devices (3) [co-listed with EE 5460]
 MY 5750 - Bioapplications of Nanotechnologies (2) [co-listed with BE 5750]

Other Electives:
 BE 5440 - Genetic Engineering (3)
 BL 5030 – Molecular Biology (3)
 *CH 5310 - Advanced Inorganic Chemistry (3)
 *CH 5410 - Advanced Organic Chemistry I (3)
 *CH 5420 - Advanced Organic Chemistry II (3)
 CH 5509 - Environmental Organic Chemistry (3)
 CH 5570 - Advanced Biophysical Chemistry (3)
 EE 5430 - Electronic Materials (3) [co-listed with MY5430]
 FW 4089 - Bioinformatics (3)
 FW 5085 - Functional Genomics and Biotechnology (3)
 FW 5089 - Tools of Bioinformatics (4)
 *MY 3700 - Electronic, Optical, and Magnetic Properties of Materials (4)
 MY 5430 - Electronic Materials (3) [co-listed with EE5430]
 MY 5550 - Solid Surfaces (3)
 MY 6100 - Computational Materials Science and Engineering (3)
 *PH 3410 – Quantum Mechanics I (3)
 *PH 3411 – Quantum Mechanics II (3)
 *PH 5410 – Quantum Mechanics I (3)
 *PH 5411 – Quantum Mechanics II (2)
PH 5510 – Theory of Solids (3)
PH 5520 – Materials Physics (3)
PH 5530 - Selected Topics in Nanotechnology (2)

Due to the rapid developments in the field of nanotechnology, other appropriate electives may be substituted upon approval of the Multi-Scale Technologies Institute's Associate Director for Education and Outreach (or in the absence of such an office, by a faculty member appointed by the Dean of the Graduate School).

*These courses may count as electives only for students not enrolled in graduate degree programs in the respective home departments for these courses; e.g. Physics M.S. and Ph.D. candidates may not count PH3410, 3411, 5410 or 5411 toward the Graduate Certificate in Nanotechnology.

7. New Course Descriptions

SS 5820 Graduate Seminar in Societal Implications of Nanotechnology (2 credits)
This would be a new graduate-level version of SS 3820 Societal Implications of Nanotechnology, to be proposed in the curriculum binder-process in 2007. SS 3820 is currently being taught by visiting assistant professor Dr. Michael Bennett, and has been taught in the past by Dr. Bruce Seely. SS 5820 could be taught as soon as spring 2008.

Tentative catalog description:
Nanotechnology, which involves understanding and exploiting phenomena in materials or systems where at least one dimension is at the nanometer scale, spans virtually all scientific and engineering disciplines. This graduate course examines in a seminar format some of the likely implications of these developments for society. Attention will be given to the economic, social, ethical and moral, and political consequences of the unfolding development of science and engineering fields at the nanoscale.

Prior to the approval of this new course, students can satisfy the requirements of this certificate by taking SS 3820 plus one-credit independent study in SS 6500 - Independent Study/Directed Reading under the direction of the instructor of SS 3820.

8. Library and other Learning Resources.

No additional library or learning resources are required.

9. Computing Access Fees

No computing access fees are required beyond those normally incurred by enrolled graduate students.
10. Faculty Resumes

Key faculty for this graduate certificate program include the following, whose vitae are attached at the end of this proposal:

Michael Bennett, Ph.D., J.D. (Visiting Assistant Professor, Department of Social Sciences).

Paul Bergstrom, Ph.D. (Associate Professor, Department of Electrical and Computer Engineering; Associate Director for Research, Multi-Scale Technologies Institute).

John A. Jaszczak, Ph.D. (Professor, Department of Physics; Associate Director for Education and Outreach, Multi-Scale Technologies Institute; Adjunct Professor, Department of Materials Science and Engineering, Adjunct Professor, Department of Education).

Craig R. Friedrich, Ph.D. (Professor, Department of Mechanical Engineering-Engineering Mechanics; Director, Multi-Scale Technologies Institute).

Bruce E. Seely, Ph.D. (Professor and Chair, Department of Social Sciences).

Additional faculty and staff that are important to this program are those associated with the Multi-Scale Technologies Institute and the Engineering Physics Ph.D. program. Biographical information and additional details for these personnel may be found at:

http://www.me.mtu.edu/Institutes/MuSTI/research.htm and

http://www.phy.mtu.edu/Engphys/faculty.html.
11. Description of available/needed equipment.

No additional equipment is required beyond that currently available on campus. On campus facilities are extensive, and include:
Hitachi S-4700 field emission scanning electron microscope
Hitachi FB-200A focused ion beam system
JEOL JSM-6400 scanning electron microscope
JEOL JEM-4000FX transmission electron microscope
Philips XL40 environmental scanning electron microscope
Scintag XDS-2000 powder x-ray diffractometer
Scintag XDS-2000 pole figure x-ray diffractometer.
Philips Electronic Instruments x-ray generator and Laue method diffractometer
Siemens D500 powder x-ray diffractometer
Molecular Beam Epitaxy system
Wave Guide Testing Optics Bench
Micromanipulator
Microtome and polishing machine
Dual-RF-plasma Chemical Vapor Deposition (CVD) System
Thermal Chemical Vapor Deposition (CVD) System
Dual-RF-plasma Pulsed-Laser Deposition (PLD) System
Microfabrication laboratory, etching, lithography, sputtering, evaporation and etching
Micromechanical machining laboratory

These and other facilities are described in more detail under http://www.nano.mtu.edu/nanofacilities.htm, http://mcff.mtu.edu/acmal/instrumentation.htm, and http://www.me.mtu.edu/Institutes/MuSTI/facilities.htm; however, these lists are by no means exhaustive.

12. Program Costs

There are no additional direct costs associated with establishing this graduate certificate program at this time. The sustainability of offering SS 5820 in the longer term may depend upon additional resources or continuation/conversion of a temporary faculty line.

13. Space

No additional space is required.

14. Policies Regulations and Rules

All policies, regulations and rules are described in Section 6 and follow University Senate policy for Graduate Certificates.

The Associate Director for Education and Outreach of the Multi-Scale Technologies Institute (MuSTI) shall assist the Graduate School in the administration of this certificate.
Recommendations for modification of the curricular requirements of this certificate shall be made through the MuSTI to the Dean of the Graduate School.

15. Accreditation (Not applicable)

16. Internal Status of the Proposal

On April 3, 2007, the Graduate Faculty Council approved that this proposal be forwarded to the University Senate. This draft includes suggested modifications made by the Graduate Faculty Council and the Senate Curricular Policy Committee.

Revised version submitted October 8, 2007 to the Provost office, Dean of the Graduate School and President of the Graduate Faculty Council, and the University Senate for advice and approval.

17. Planned Implementation

This program could begin starting in spring semester, 2008.

Citations:

Listing of Prerequisites to Required and Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Prerequisites and/or Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 4700</td>
<td>many not be freshman or sophomore</td>
</tr>
<tr>
<td>BE 5300</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5440</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5660</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5700</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5750</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5800</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BE 5940</td>
<td>graduate enrollment and instructor permission</td>
</tr>
<tr>
<td>BL 5020</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BL 5030</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BL 5040</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BL 5050</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>BL 5060</td>
<td>BL 5040 or BL 5050</td>
</tr>
<tr>
<td>CH 5310</td>
<td>CH 4320</td>
</tr>
<tr>
<td>CH 5410</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>CH 5420</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>CH 5509</td>
<td>CE 4501 or CH 3510</td>
</tr>
<tr>
<td>CH 5570</td>
<td>CH 3520</td>
</tr>
<tr>
<td>EE 5430</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>EE 5460</td>
<td>none</td>
</tr>
<tr>
<td>EE 5470</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>EE 5480</td>
<td>EE 4240 or MY 4240 and senior or graduate enrollment</td>
</tr>
<tr>
<td>EE 6480</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>FW 4089</td>
<td>may not be freshmen or sophomore</td>
</tr>
<tr>
<td>FW 5080</td>
<td>graduate enrollment and instructor permission</td>
</tr>
<tr>
<td>FW 5085</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>FW 5089</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MEEM 5640</td>
<td>MEEM 3502(C)</td>
</tr>
<tr>
<td>MY 3700</td>
<td>(PH 2200 or PH 2260) and MA 3160 and (MA 3520 or MA 3530) or (MA 2321 and MA 3521)</td>
</tr>
<tr>
<td>MY 4200</td>
<td>none</td>
</tr>
<tr>
<td>MY 4240</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>MY 4240D</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>MY 4710</td>
<td>none</td>
</tr>
<tr>
<td>MY 5200</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 5250</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 5430</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 5460</td>
<td>none</td>
</tr>
<tr>
<td>MY 5470</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>MY 5480</td>
<td>EE 4240 or MY 4240 and senior or graduate enrollment</td>
</tr>
<tr>
<td>MY 5550</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 5580</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 5750</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 6100</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>MY 6480</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>Course</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>PH 3410</td>
<td>PH2400 and MA3530</td>
</tr>
<tr>
<td>PH 3411</td>
<td>PH3410</td>
</tr>
<tr>
<td>PH 5410</td>
<td>graduate enrollment</td>
</tr>
<tr>
<td>PH 5411</td>
<td>PH5410</td>
</tr>
<tr>
<td>PH 5530</td>
<td>senior or graduate enrollment</td>
</tr>
<tr>
<td>SS 5820</td>
<td>graduate enrollment</td>
</tr>
</tbody>
</table>
BIOGRAPHICAL SKETCH

MICHAEL G. BENNETT
Social Sciences department
Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931-1295
1.906.487.2413 (o)
1.906.487.2468 (f)
mbennett@mtu.edu

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>Rensselaer Polytechnic, Ph.D., Science & Technology Studies</th>
<th>August 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Honors: DeWitt-Wallace Foundation Fellow; Rensselaer Graduate Fellow; Alger Research Fellow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities: Graduate Committee, member; Tennis Club, member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Harvard Law School, J.D.</th>
<th>June 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activities: Harvard Law Record, Columnist Campus Calendar Newspaper, Food Critic Black American Law Student Association, Section Rep. Asian Law Society, Member Harvard Shao Lin Kung Fu Club, Member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Florida A&M University, B.S. Applied Physics</th>
<th>June 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mathematics Minor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Honors: Summa Cum Laude; Dean's List; Florida Undergraduate Scholar; Conn Memorial Scholar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activities: National Society of Physics Students, Member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPOINTMENTS</th>
<th>Michigan Technological University, Houghton, MI</th>
<th>2006-Present</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visiting Assistant Professor teaching and performing research on the ethical, legal and societal implications of emerging nanotechnoscience.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>University of Virginia, Charlottesville, VA</th>
<th>2004-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worked as a research and teaching fellow.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Conduit Technology Partners/The Tiptree Group, Chicago, IL</th>
<th>2001-Present</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-founder and managing director of an intellectual property consultancy specializing in patent law, copyright law and technology transfer.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Polytechnic University, New York, NY</th>
<th>Spring 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worked as a lecturing adjunct professor of intellectual property and management studies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Florida A&M University, Tallahassee, FL</th>
<th>2000-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worked as a lecturing adjunct professor of Physics and Physical Science.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Brinks, Hofer, Gilson, Lione, Chicago, IL</th>
<th>1998-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Worked as an intellectual property law firm associate, focused on patent, trademark and copyright law.</td>
<td></td>
</tr>
</tbody>
</table>
Federal Deposit Insurance Corporation, New York, NY
Summer 1997
Worked as a law clerk researching and writing on issues concerning banking laws and regulations.

Brinks, Hofer, Gilson, Lione, Chicago, IL
Summer 1996
Worked as a law clerk researching and writing on intellectual property issues ranging from trademark protection to a draft of the Illinois Digital Signature Act.

Florida A&M University, Physics Dept., Tallahassee, FL
1990-1994
Worked as a research assistant studying the partial differential equations that govern collisions between atoms and molecules.

Lawrence Livermore Natl. Laboratory, Livermore, CA
Summer 1994
Worked in the Advanced Lasers Division and studied the thermally sensitive regions of several types of laser crystals.

Lawrence Livermore Natl. Laboratory, Livermore, CA
Summer 1993
Worked in the Advanced Lasers Division researching the thermal depolarization of Helium-Neon laser components.

Argonne Natl. Laboratory, Argonne, IL
Summer 1992
Worked as a research assistant studying the Bismuth-Germanium-Oxide detectors of the ATLAS linear accelerator.

PUBLICATIONS

COLLABORATORS
IN THE PAST 48 MONTHS
Ron Eglash, Rensselaer Polytechnic Institute.
Steven Maynard, Conduit Technology Partners.

THESIS ADVISOR
Langdon Winner, Rensselaer Polytechnic Institute.
BIOGRAPHICAL SKETCH

PAUL L. BERGSTROM
Associate Professor, Electrical and Computer Engineering

Office: Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931
Phone: (906) 487-2058, Fax: (906) 487-2949, E-mail: paulb@mtu.edu

A. Professional Preparation:

The University of Michigan Electrical Engineering Ph.D. 1996
The University of Michigan Electrical Engineering M.S. 1993
The University of Minnesota Electrical Engineering B.S. summa cum laude 1989

B. Appointments:

9/06–present Associate Professor, Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI
9/00–9/06 Assistant Professor, Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI
4/96–9/00 Principle Staff Engineer, Motorola Inc., Semiconductor Product Sector, Sensor Products Division, Transportation Systems Group, Tempe, AZ
9/93–4/96 Semiconductor Research Corp., Graduate Fellow, The University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, MI
9/89–9/90 Design Engineer, Rosemount, Inc., Aerospace Division, Burnsville, MN, Air Products Group

C. Publications:

(i) Selected Related Publications:

(ii) Other Related Publications:

D. Synergistic Activities:

- Associate Director, Multi-Scale Technologies Institute, Michigan Technological University.
- Director, Microsystems Materials and Devices Laboratory, encompassing the semiconductor fabrication facilities at Michigan Technological University
- Co-advisor for Wireless Integrated Microsystems Enterprise Team at Michigan Tech. University, sponsored by the NSF ERC on WIMS

E. Collaborators & Other Affiliations:

(i) **Collaborators:**
Helmut Föll (Christian-Albrechts U.–Kiel), Craig Friedrich (MTU), John Jaszczak (MTU), Shashi Karna (Army Research Laboratory), Miguel Levy (MTU), Joseph Lindgren (Micron Technology, Inc.), Govind Mallick (Army Research Laboratory), Michele Miller (MTU), Andrew Mason (Mich. State U.), Peter Moran (MTU), Khalil Najafi (U. Mich), Ravindra Pandey (MTU), Mikko Ritala (U. Helsinki), Tom Ritzdorf (Semitool, Inc.), Raymond Roop (Freescale Semiconductor, Inc.), Thomas Schuelke (Fraunhofer Soc.–USA), Orhan Soykan (Medtronic, Inc.), Larry Sutter (MTU), Douglas Swenson (MTU), Thomas van Dam (MTU), Kensall Wise (U. Mich.), Yoke Khin Yap (MTU), Edward Zellers (U. Mich.)

(ii) **Graduate and Postdoctoral Advisors:**
Dr. Kensall D. Wise Director, Michigan Engineering Research Center on Wireless Integrated MicroSystems (WIMS), Department of Electrical Engineering and Computer Science, The University of Michigan

(iii) **Thesis Advisor and Postgraduate-Scholar Sponsor:** (Current students: 8 PhD, 3 MS)
Doctoral Students: Hui Xia, MSE (expected August 2007); P. Santosh Karre, EE (expected August 2007); Jianlin Liang, EE (expected December 2007); Daw Don Cheam, EE (expected August 2008); L. Kumar Vanga, EE (expected December 2008); Manoranjan Acharya, EE (expected September 2008); Madhusudan Savaikar, Physics (expected December 2008); Ghous Narejo, EE (expected December 2008).
Masters Students: Shwetha Bolagond, EE (expected May 2007); Rodney Snow, EE (expected May 2007); Michael Oisten, EE (expected May 2008).
Graduates: Aditya Kapoor, MS EE, May 2006; Jin Zheng Wallner, Ph.D EE, April 2006; Melissa Trombley, NDSEG Fellow, Ph.D EE, October 2005; Thomas Wallner, MS EE, July 2004; Yan Yang, MS EE, July 2004.
CRAIG FRIEDRICH

Professor, Department of Mechanical Engineering and Engineering Mechanics

Office: Michigan Technological University, ME-EM Department, 1400 Townsend Drive, Houghton, MI 49931 Phone: 906-487-1922, Fax: 906-487-2822, Email: craig@mtu.edu

A. Education:
Louisiana Tech University B.S., Mechanical Engineering 1978
Louisiana Tech University M.S., Mechanical Engineering 1981
Oklahoma State University Ph.D., Mechanical Engineering 1987

B. Appointments:
Current: Professor, Department of Mechanical Engineering & Engineering Mechanics, Michigan Technological University, Director - Multi-Scale Technologies Institute
1995-1997: Associate Director, Institute for Micromanufacturing, Louisiana Tech University
1994-1997: Group Leader, Micromechanical Machining Processes Laboratory, Institute for Micromanufacturing, Louisiana Tech University, 1994-1997
1991-1997: Associate Professor, Department of Mechanical and Industrial Engineering, Louisiana Tech University
1987-1991: Assistant Professor, Department of Mechanical and Industrial Engineering, Louisiana Tech University
1980-1981: Nuclear Engineer, U.S. Navy, Norfolk Naval Shipyard
1978-1980: Senior Design Engineer, Pangborn Division of Carborundum Corp.

C. Selected Papers:

D. Synergistic Activities:

- Dr. Friedrich is the founder and Director of the Multi-Scale Technologies Institute (MuSTI) at Michigan Tech [www.me.mtu.edu/Institutes/MuSTI/]. MuSTI is comprised of more than 30 faculty affiliates who share the vision that devices and systems can have increased functionality by integrating phenomena across many dimensional scales. MuSTI became operational in late 2005 and already has more than $4 million of funded research by 18 faculty, 3 post-doctoral fellows, and 29 PhD students. MuSTI is also home to the Undergraduate Minor Degree in Nanoscale Science and Technology and the Graduate Certificate in Nanotechnology.

- The NSF ERC for Wireless Integrated Microsystems has a particularly strong component in education from K-12 to the Engineering Enterprise in Integrated Microsystems. This outreach has provided training for classroom teachers in the field of microtechnologies, will provide experimental hardware to high school students, and will attempt to attract under-represented minorities into engineering and science. Dr. Friedrich chaired the ERC Science Teacher Workshop in 2003 “Linking Education with Research” and the Native American Student Workshop in 2005. These workshops placed high school teachers and under-represented students in the microfabrication laboratories at MTU and gave them hands-on experiences to take back to the classroom, in addition to creating and archiving appropriate lesson plans.

- Dr. Friedrich strongly believes in the integration of research and student learning. Working on a past NSF Combined Research and Curriculum Development grant, he developed courses in micromechanical machining and micrometrology that were the technical focus of the research. Those quarter-term courses were taught multiple times while at Louisiana Tech University and have been integrated into a one-semester course now taught at Michigan Tech. During spring 200 and 2005, the course was taught via distance technologies to the University of Michigan and several companies. In addition to course development, a CD-ROM tutorial and a web site were created to serve as reference materials for students. The web site is located at www.me.mtu.edu/~microweb.

E. Collaborators & Other Affiliations:

(i) Collaborators:
Dr. Tim Ameel (University of Utah), Mr. Philip Coane (Louisiana Tech University), Dr. Rob Keynton (University of Louisville), Dr. Mike Vasile (Sandia National Lab). There are numerous ERC collaborators at the University of Michigan (Richard Brown, Carlos Mastrangelo, Leo McAfee, Khalil Najafi, Clark Nguyen, Ken Wise, Ted Zellars, and others) and Michigan State University (Dean Aslam, Percy Pierre).

(ii) Dissertation Advisor:
James K. Good, Oklahoma State University.

(iii) Graduate students in last 5 years:

53 total graduate students graduated with 6 additional in progress.
JOHN A. JASZCZAK
Department of Physics Phone: (906) 487-2255
Michigan Technological University Fax: (906) 487-2933
1400 Townsend Dr. E-mail: jaszczak@mtu.edu
Houghton, MI 49931-1295

Education
Ph.D. (Physics), The Ohio State University, 1989. Advisor: Professor W. F. Saam.
Dissertation: “Facets and Roughening in Crystals and Quasicrystals.”
M.S. (Physics), The Ohio State University, 1985.
B.S. with Highest Honors (Physics), Case Western Reserve University, 1983.

Professional Experience
Michigan Technological University Professor 9/2006-present
Houghton, Michigan Associate Professor 9/1997-present
Department of Physics Assistant Professor 9/1991-8/1997
Associate Director for Education and Outreach, MTU Multiscale
Materials Science and Engineering Technologies Institute
Adjunct Professor 4/2006-present
Adjunct Associate Professor 10/2004-present
Department of Education
Adjunct Curator 8/1992-present
Seaman Mineral Museum
United States Air Force Summer Faculty 6/2006-present
Office of Scientific Research Research Associate 7/1/93-8/25/93
Argonne National Laboratory Postdoctoral Appointee 10/2004-present
Argonne, Illinois Materials Science Division
Interface Group

Selected Publications:

*Ph.D. student advisee. ‡Undergraduate student advisee.

Synergistic Activities:

3. As adjunct curator of the A. E. Seaman Mineral Museum, the Mineralogical Museum of the State of Michigan, help to develop the academic role of the museum for the Michigan Tech community and surrounding communities. As chair of the Seaman Mineral Museum Society, help to promote the museum nationally and internationally and promote the museum’s mission.

4. Chair, Physics Department Graduate Studies Committee: 1997-2002. Work with all aspects of program development, student advising, recruiting and program assessment. Helped to lead the effort to develop and implement the new Ph.D. in Engineering Physics at MTU, which was State Academic Board and the MTU Board of Control in December, 2001. Continuing role as department assessment coordinator for physics graduate programs.

5. Present lectures and workshops, "Exploring Nanotechnology through Carbon Nanotubes", to local high school students and MTU freshmen engineering majors, 2004-present.

6. Work with MTU Education Department to (i) develop new teaching certification programs in Integrated Science and in Physical Science (ii) prepare review materials for review of Physics secondary education certification program

Collaborators in the past 48 months:

Yury Gogotsi, Svetland Dimovski (Drexel University)
Da Gao, Bruce Seely, Michele Miller, Gerry Caneba, George Robinson, Steve Hackney (MTU)
John Rakovan (Miami University, Oxford, Ohio)

Advisors

Doctoral thesis advisor: W. F. Saam, Ohio State University
Postdoctoral advisor: D. Wolf, Argonne National Laboratory
Biographical Sketch: Bruce E. Seely
Department of Social Sciences, Michigan Technological University
1400 Townsend Drive
Houghton, Michigan 49931-1295
email: bseely@mtu.edu; phone: 906/487-2113

Professional Preparation
B.A., cum laude, St. Lawrence University, Canton, New York, May 1975
M.A., University of Delaware, Newark, Delaware, June 1977
Ph.D., History of Technology, University of Delaware, Newark, Delaware, June 1982

Professional Appointments
Assistant Professor of History, Texas A&M University, 1981-1986.
Professor of History and of Science, Technology and Society, Department of Social Sciences, Michigan Technological University. (Assistant Professor, 1986-1988; Associate Professor, 1988-1997); Department Chair, beginning August 2002

Publications (most closely related to the project)

Publications (significant other publications)

Synergistic Activities

Founding Co-Editor-in-Chief of Comparative Technology Transfer and Society, (Johns Hopkins University Press), April 2003.

Collaborators:
Paul Barrett, Illinois Institute of Technology
Terry Reynolds, Michigan Technological University
Mark Rose, Florida Atlantic University
Donald Klingner, University of Colorado -Colorado Springs

Advisors:
Engene S .Ferguson, University of Delaware (deceased)
Glenn Porter, Hagley Museum (retired)

Advisees:
Teresa Kynell, Northern Michigan University (deceased)
Randall Chafy, Northern Telecom, Ottawa, Canada